

Bioretention Areas: Lessons Learned for Improved Performance

Peter Schultze-Allen, CPSWQ, RQP EOA, Inc.

San Mateo Countywide Water Pollution Prevention Program

June 18, 2024

Presentation Overview

- Bioretention area (BRA) overview
- The differences between operation issues & maintenance issues
- Designing with operation and maintenance (O&M) in mind
- Design tips to improve O&M performance
- Construction tips to improve O&M performance

y Area

Bioretention Design - Overview

Source: Alameda County Clean Water Program

Bioretention Area Overview

SAN MATEO COUNTYWIDE Water Pollution Prevention Program From the SMCWPPP GIDG

Bioretention Area Examples

Differences Between Operation & Maintenance Issues

- Operation: system is not functioning correctly (design/build error)
- Maintenance: preventing problems and restoring/sustaining functionality
- Example operation issues:
 - Runoff does not enter bioretention area properly (usually for structural reasons):
 - Curb inlet has insufficient drop/slope
 - Cannot enter due to blocked inlet
 - Grading (outside or inside bioretention area)
 - Bypasses system directly to overflow
- Example maintenance issues:
 - Removal of trash

Ensuring irrigation system is working

Designing with Operation and Maintenance In Mind

Siting

- Provide access for maintenance & inspections - not through or on private residential space.
- Out of sight = out of mind (e.g., underground pumps, media filters, etc.)
- Special equipment
 - Consider equipment needed for maintenance (e.g. sweeper for pervious pavement)

 Poor planning for pedestrian traffic

- Consider location of utilities, equipment or design elements that could affect bioretention area performance or surface area space
- Review other parts of the design that may impact stormwater facilities

 Consider how design elements will require compaction of soil during construction

Cleanout

- 45° angle or sweep bend not 90°
- Smooth interior (not corrugated)
- Adequate size (4" min)
- Avoid confined space entry (e.g., oversized overflow)
- Removable grates on trench drains for easy access

 Metal and domed (beehive) grates on overflows prevent mulch blockage, are durable and are easier to find.

Recommended options

Water Pollution Prevention Program Problems - not recommended

Design Tips for Improved Performance

Design issues related to flow:

- 1. Getting water in concrete form work and grading
- **2.** Spreading the flow
- 3. Erosion

Design Issue: 1. Getting Water In

Design Issue: Getting the Water In

 Solution: Bioretention area curbs that can be maneuvered by street sweeping vehicles

Design Issue: Getting Water In

Solutions:

- Adequate-sized opening
- Adequate drop
- Adequate slope

Design Issue: Getting Water In

Solution: Concrete splash-apron/forebay Advantages:

- Controls erosion
- Reduces velocity
- Captures sediment and trash
- No weeds
- Sediment can be vacuumed/swept up
- Keeps vegetation from blocking inlet
- Better than cobble!
- Easier maintenance
- Disadvantages:
- Less practical when you have many inlets
- Increases impervious surface and reduces treatment area
- Could have standing water for a while
- Increases heat island effect

Design Issue: Getting Water In

Design Issue: Getting Water in

Problem: Erosion at pump outlet

Design Issue: Getting Water in

Solutions:

- Don't use pumps! design for gravity flow
- If you must use a pump consider requiring:
 - Backup power
 - Alarm (if doesn't work)
 - Annual testing (in July)
 - Backup pump

Prevention Program

Design Issue Getting Water in

Solutions:

- Don't use pumps!
- If using pump review flow rates, pipe size and flow rate/energy
- Consider additional energy dissipation that is hardened and stabilized/staked down

Design Issue: 2. Spreading the Flow

Problem: Flow doesn't spread out within the BRA Solution: Flow spreader

Design Issue: 2. Spreading the Flow

Solution: Flow spreader

Problem: Water at inlets causes erosion

• Problem: Erosion along flow path

Solutions

- Roof leaders
 - Energy dissipation
 - Splash block is best
 - Cobbles as last resort
 - Flow spreaders
- Curb cuts
 - Energy dissipation
 - Splash apron/forebay is best
 - Cobbles as last resort

Solution: Vegetation placement/density

Solutions:

- Grading (spread flow out)
- Multiple/frequent curb cuts
- Vegetation density (no mow turf)

Construction Tips for Improved Performance

Construction issues:

- 1. Grading inside and outside
- 2. Outlet elevations
- 3. Subsoil and BSM compaction
- 4. Obstructions

Construction Issue: 1. Grading - Inside

Problem: Grading inside bioretention area allows only minimal or no treatment

Construction Issue: Grading – Inside and Outside

Problem: Grading of pavement to BRA inlet (and inside BRA)

Construction Issue: Pavement Grading

Solutions (pre-construction – aka prevention):

- Pre-construction meeting with construction contractor?
- Earlier inspection during construction?
- More clear grading information on plans?
- More experienced contractor?
- More experienced inspector?
- Municipal requirement of sign-off before final approval of construction?
- Performance bond for contractor?

Construction Issue: Pavement Grading

Solutions (post-construction):

- Speed bump diverter and BRA regrading
- Trench drain diverter and BRA regrading
- Regrading of BRA with new inlets
- Alternative compliance

Construction Issue: 2. Outlet Elevation and Location

Problem: Bypass (no treatment)

Construction Issue: Outlet Elevation

Problem: Overflow not raised to proper height which doesn't allow proper ponding of water

Solution: better coordination between contractor and inspector?

3. Construction Issue: Compaction

Problem: Mechanical compaction of subgrade in BRA – reduces permeability of subgrade and/or BSM which eliminates infiltration capability and can cause standing water which can cause vector

issues.

Construction Issue: Compaction

Solution:

- Use only boots and water to compact BSM
- Do not smear/glaze subsoil with excavator shovel
- Scarify subgrade prior to filling in BRA with Class 2 perm

4. Construction Issue: Obstructions

Construction Issue: Obstructions

Solutions:

- Better review of plans?
- Better coordination between contractor and inspector?

Group Exercise

Consider location of utilities/equipment that will require maintenance

Questions?

Contact information: Peter Schultze-Allen, CPSWQ, RQP EOA, Inc.

pschultze-allen@eoainc.com

