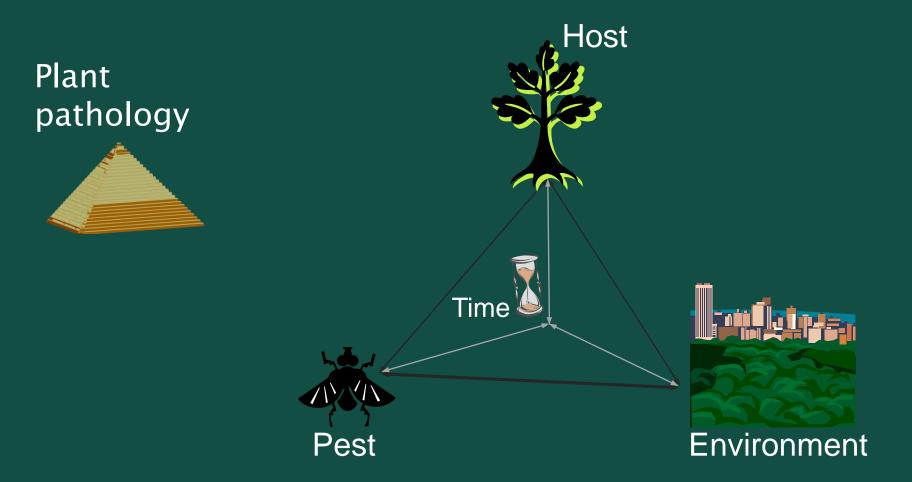
Integrated Pest Management in Arboriculture Igor Laćan ilacan@ucanr.edu

Neonic slides courtesy of Dr. Andrew Sutherland, Herbicide info. from Dr. Cheryl Wilen, UCIPM

> University of California Agriculture and Natural Resources

Cooperative Extension


CISR, UC Riverside

Outline

Pest developments of 2015...
→ please tell me what I am missing...!
Neonic situations
by Dr. Andrew Sutherland
Glyphosate fun
Roundup round-ups...
Discussion
(rotten fruit throwing, etc.)

MENTION OF ANY PESTICIDE NAMES IS NOT AN ENDORSEMENT NOR A RECOMMENDATION

four elements of a pest problem

Integrated Pest Management (IPM)

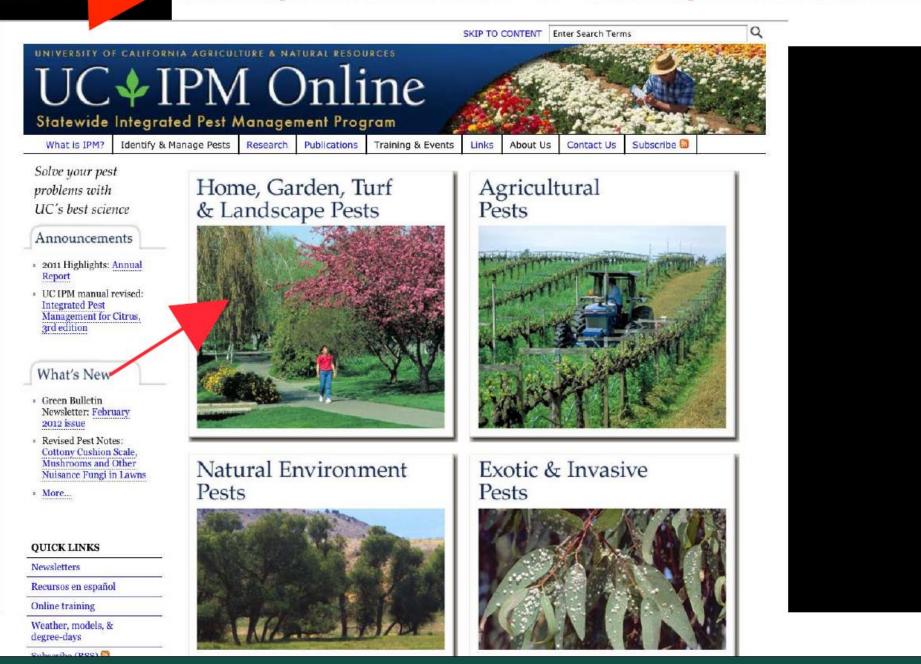
IPM is a **decision-making process** that uses all available pest management strategies, including cultural, physical, biological & chemical control to prevent economically damaging pest outbreaks & reduce risks to human health & the environment

Drought and pests: Eucalyptus longhorn borer

(or: watering can be a part of IPM!)

Water Stress and Insect Injury

Although some species perform well with little or no irrigation water, their susceptibility to insect attack and injury may increase with water stress. For example, many *Eucalyptus* species perform well in nonirrigated locations in many parts of California. When water stressed, however, they become susceptible to attack and injury by the eucalyptus longhorned borer (*Phorocantha semipunctata*). This is also the case for Monterey pine (*Pinus radiata*) and the California fivespined engraver beetle (*Ips paraconfusus*). For these species, evaluations were made with consideration given to water stress and pest interactions. For example, although Tasmanian blue gum (*Eucalyptus globulus*) performs well in Regions 3 and 4 with little summer water, it was assigned the category Moderate to minimize susceptibility to borer injury.


Integrated Pest Management (IPM)

IPM is a **decision-making process** that uses all available pest management strategies, including cultural, physical, biological & chemical control to prevent economically damaging pest outbreaks & reduce risks to human health & the environment

Environmentally Friendly or Less-Toxic Pest Management

- is an ecological strategy
 - for preventing and reducing pest problems
 - with minimum adverse impact on human health, non-target organisms, and the environment.

www.ipm.ucanr.edu or www.ipm.ucdavis.edu

UNIVERSITY OF CALIFORNIA AGRICULTURE & NATURAL RESOURCES

UC↓IPM Online

Statewide Integrated Pest Management Program

UC IPM Home > Homes, Gardens, Landscapes, and Turf > Trees, Shrubs and Woody Ornamentals

How to Manage Pests

HOME

SEARCH

Pests in Gardens and Landscapes—Ornamental Trees and Shrubs

Search trees and shrubs:

ON THIS SITE

What is IPM?

Click on a table heading to sort the column¹. Legend: \bullet = Ascending, \bullet = Descending, \ddagger = Unsorted

site. Click on a name to link to information about pests commonly found on that plant.

Home & landscape pests

Agricultural pests

Natural environment pests

Exotic & invasive pests

Weed gallery

Natural enemies gallery

Weather, models & degree-days

Pesticide information

Research

Publications

Events & workshops

Online training

Links

About us

Contact us

Common name index—see also cultural tips

| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P-Q | R | S | T | U-Z |

The table below lists common, scientific, and family names for ornamental trees and shrubs included in this Web

Go

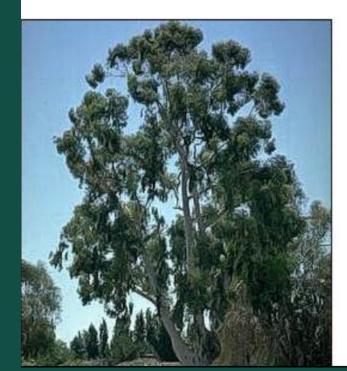
Common name	Scientific name	Family				
Abelia	Abelia spp.	Caprifoliaceae (Honeysuckle family)				
Abutilon	Abutilon spp.	Malvaceae (Hibiscus family)				
Acacia	Acacia spp.	Fabaceae (Pea family)				
African fern pine	Podocarpus spp.	Podocarpaceae (Podocarpus family)				
Agave	Agave spp.	Agavaceae (Agave family)				
Albizia	Albizia spp.	Fabaceae (Pea family)				
Alder	Alnus spp.	Betulaceae (Birch family)				
Algerian ivy	Hedera spp.	Araliaceae (Ginseng family)				
Andromeda	Pieris spp.	Ericaceae (Heath family)				
Angelica	Fatsia japonica = Aralia sieboldii	Araliaceae (Ginseng family)				
Aralia	Fatsia japonica = Aralia sieboldii	Araliaceae (Ginseng family)				
Araucaria	Araucaria spp.	Araucariaceae (Araucaria family)				
Arborvitae	Platycladus orientalis	Cupressaceae (Cypress family)				
Arborvitae	Thuja occidentalis	Cupressaceae (Cypress family)				
Artemisia	Artemisia spp.	Asteraceae (Sunflower family)				

How to Manage Pests Pests in Gardens and Landscapes

www.ipm.ucanr.edu or www.ipm.ucdavis.edu

More trees and shrubs

eaves and


Eucalyptus, Gum—Eucalyptus spp.

Plant Identification

Eucalyptus species are evergreen trees or large shrubs. They are hardy, fast-growing, and widely adaptable.

Optimum conditions for growth

Eucalyptus plants are widely adaptable to several climatic zones. They do best in full sun. They require little water once established; some species do better with some supplemental summer water.

The redgum lerp psyllid (Glycaspis brimblecombei) was found in Los Angeles in 1998 and has spread throughout much of

California. This insect from Australia also occurs in Arizona, Florida, Hawaii, and Mexico on a variety of eucalyptus species.

IDENTIFICATION AND LIFE CYCLE

Psyllids are plant-juice sucking homopterans in the insect family Psyllidae. Redgum lerp psyllid nymphs (immatures) form a cover called a "lerp." which is a small white, hemispherical cap composed of solidified honeydew and wax. Lerps on leaves can be up to about 1/8 inch in diameter and 1/12 inch tall and resemble an armored scale (Fig. 1). Nymphs enlarge their lerp as they grow, or they move and form a new

Outline

Pest developments of 2015...
→ please tell me what I am missing...!
Neonic situations
by Dr. Andrew Sutherland
Glyphosate fun
Roundup round-ups...
Discussion
(rotten fruit throwing, etc.)

MENTION OF ANY PESTICIDE NAMES IS NOT AN ENDORSEMENT NOR A RECOMMENDATION

Prevention example: Goldspotted oak borer Agrilus auroguttatus

Host: Live oaks (Coast, Canyon); California black oak Range: Riverside and San Diego Counties

Polyphagous shothole borer and Fusarium dieback

Akif Eskalen, Eskalenlab.ucr.edu

Range: Los Angeles, Orange, Riverside and San Bernardino Counties

How did these pests get here....?

WE NEED TREES AND TREES NEED US

Poster by Ed Lum

Prevention example: Thousand cankers disease *Geosmithia morbida*

Host: Walnuts (rarely the edible one) Vector: Walnut Twig Beetle *Pityophthorus juglandis* Range: state-wide

J.K. Hasey

A.D. Graves

Drought and pests: Foamy bark canker on stressed oaks

Management: (1) reduce stress (water!); (2) prevent construction damage;

Eskalenlab.ucr.edu

Indirect stress: Pitch canker on Monterey pine

Individual infections, may progress down the branches

Management: (1) prevent stress (water!); (2) prune out in initial stage (3) Suppress beetles, if present

Pitch Canker Zone of Infestation

Recurring problem:

UNIVERSITY OF CALIFORNIA AGRICULTURE & NATURAL RESOURCES

UC & IPM

Statewide Integrated Pest Management Program

UC IPM Home > Homes, Gardens, Landscapes, and

How to Manage Pests

Pests in Gardens and Landscapes

SEARCH

HOME

ON THIS SITE

What is IPM?

- Home & landscape pests
- Agricultural pests
- Natural environment pests
- Exotic & invasive pests
- Weed gallery

California Oakworm

Revised 4/09

Download PDF

Management if oaks might be sprayed

In this Guideline:

- Identification
- Life cycle
 About Pest Notes
- Damage
 Publication
- Management
 Glossary

The California oakworm (*Phryganidia californica*, family Dioptidae) range, which extends along the coast and through the coastal i

UC Statewide IPM Project © 2000 Regents, University of California

Reminder: Thresholds

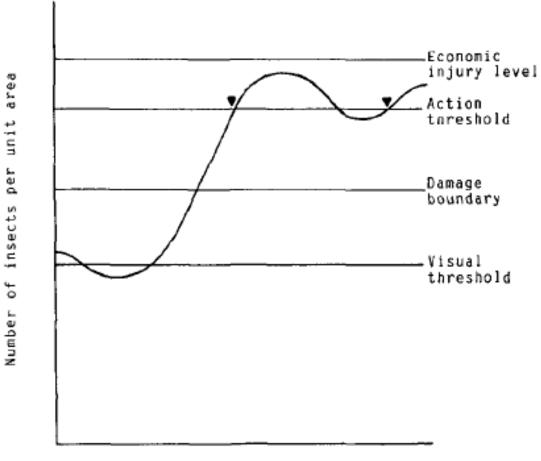
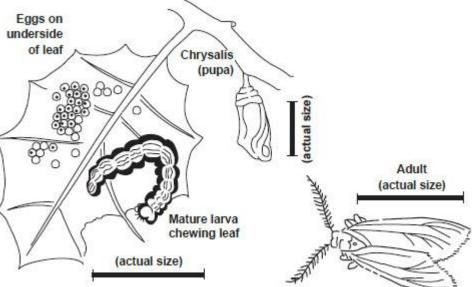



Figure 1. Graph showing the relationships of a hypothetical insect population with the thresholds observed in land-scape integrated pest management programs. $\Psi =$ intervention.

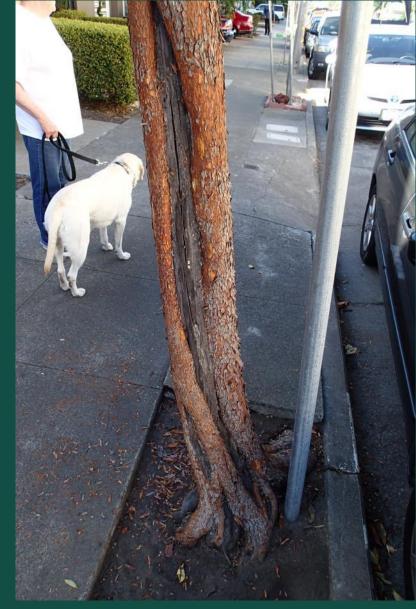
Oakworm as an example of thresholds-setting

"...If you observe more than 8 to 10 oakworms more than 1/4 inch long, defoliation may occur if oaks are not sprayed.

Alternatively, a density of 25 oakworms per 100 shoot terminals has been suggested as a treatment threshold."

VS.

reality...



Other strange things...

(1) Cankers on 'Marina' strawberry tree

(2) Bacterial leaf scorch on...?(oleander, liquidambar)

(3) Your turn!

Tree species selection is a critical component of pest management

Photos: USDA

& should consider both the individual tree AND the other urban trees

Elsewhere 1: Emerald Ash Borer *Agrilus planipennis*

Photo by Deborah Miller. USDA Forest Service. Reprinted with permission.

www.emeraldashborer.info

Photo by David Cappaert, Reprinted with permission

Pest Vulnerability Matrix

Construction

- 1 Obtain pest-host information
- 2 Arrange in table, indicate severity
- 3 Verify local importance

Pests of Landscape Trees and Shrubs

An Integrated Pest Management Guide

CE STATISHIS SATISLASTIS PER MUSACINESS PROCESS

Publication 1379

University of California Aptobles and Natural Research

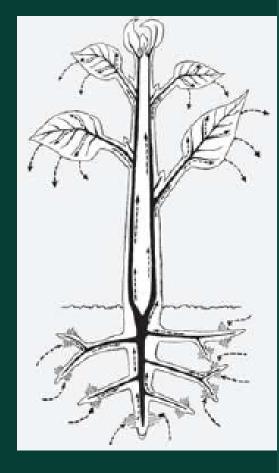
Pest	London plane tree	Maple	Honey Locust	Callery pear	Ash	Zelkova	% Tree species affected	Proportion of tree population affected
Pest count >>>	5	6	3	1	3	2		
♥ Proportion of all trees >>>	0.4	0.2	0.1	0.1	0.1	0.1		
Anthracnose (fungal disease)							67%	80%
Defoliating caterpillars							50%	70%
Soft scales (insect)							50%	70%
Asian longhorned beetle							50%	70%
Aphids (other)							33%	60%
Spider mites (combined)							33%	30%
Armillaria root rot or Oak root fungus.							17%	10%
Fireblight (bacterial disease)							17%	10%
Emerald ash borer							17%	10%

Pest	London plane tree	Maple	Honey Locust	Callery pear	Linden	Zelkova	% Tree species affected	Proportion of tree population affected
Pest count >>>	5	6	3	์ 1	2	2		
Proportion of all trees >>>	0.4	0.2	0.1	0.1	0.1	0.1		
Anthracnose (fungal disease)							50%	70%
Defoliating caterpillars							50%	70%
Soft scales (insect)							50%	70%
Aphids (other)							50%	70%
Asian longhorned beetle							33%	60%
Spider mites (combined)							33%	30%
Armillaria root rot or Oak root fungus.							17%	10%
Fireblight (bacterial disease)							17%	10%
Other native borers (combined)							17%	10%

Increased scrutiny: neonicotinoid insecticides in urban arboriculture

Andrew Sutherland Bay Area Urban IPM Advisor UCCE and UC IPM

University of California Agriculture and Natural Resources


Statewide Integrated Pest Management Program

Making a Difference for California

Neonicotinoid Insecticides

Systemic action

- Translocated throughout plants
 - Roots to leaves, shoots, cambium, phloem
 - Through bark to cambium, then up to shoots
 - From seed coat to developing seedling
 - Detected within nectar, pollen, leaf exudates 0
- Sprays, injections, drenches, trunk
 - bands, seed coatings, dusts, baits...
- Most widely used insecticides in world
- Broad-spectrum activity

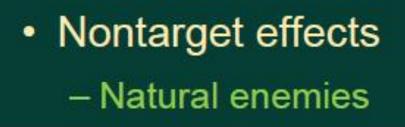
Reminder of neonicotinoid names/uses

Active ingredient (common name)	Representative products registered for use in urban landscape settings
acetamiprid	Tristar, many Ortho home-use products
clothianidin	Aloft, Arena, some Bayer Advanced products
dinotefuran	Safari, Zylam, some Ortho home-use products
imidacloprid	Marathon, Merit, Premise, many Bayer Advanced products
thiacloprid	Calypso
thiamethoxam	Amdro, Caravan, Flagship, Maxide, Meridian

Active Ingredient	Caterpillars	Sawflies	Beetle grubs	Beetle adults	Aphids	Scales	Lace bugs	Thrips	Spider Mites	Flies
Acetamiprid		x	x	х	х	Х	х	х		х
Clothianidin		х	x	Х	Х	Х	х	х		х
Imidacloprid		x	x	х	х	Х	х	х		х
Dinotefuran	x	х	х	х	х	х	х	х		x

What can we do to help?

- Strictly follow pesticide label guidelines
- Limit applications of neonicotinoids to situations where they are required
- Delay applications until after flowering
- Take precautions to avoid drift and runoff



So what's the problem?

- Nontarget effects
 - Natural enemies
 - Direct mortality due to contact (sprays, drenches)
 - Direct mortality due to nectar, pollen, exudate feeding
 - Indirect mortality due to 2° poisoning
 - Predation
 - Sessile hosts
 - Host feeding

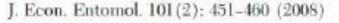
So what's the problem?

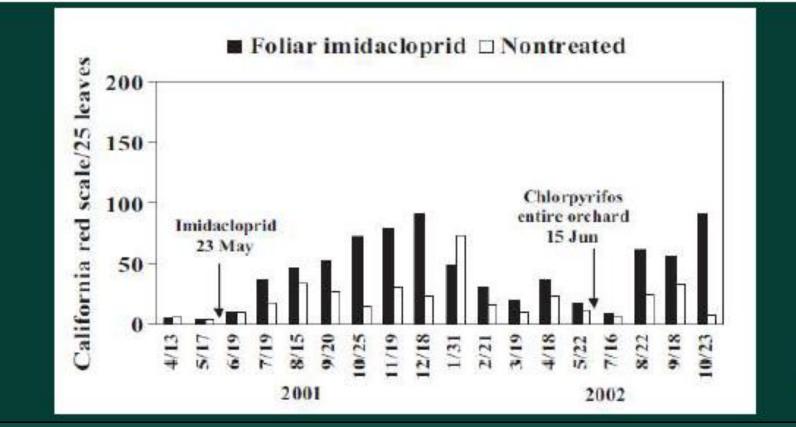
Biological Control 17, 243-249 (2000) doi:10.1006/bcon.1999.0795, available online at http://www.idealibrary.com on IDE L®

Disruptive Sublethal Effects of Insecticides on Biological Control: Altered Foraging Ability and Life Span of a Parasitoid after Feeding on Extrafloral Nectar of Cotton Treated with Systemic Insecticides

J. O. Stapel,¹ A. M. Cortesero,² and W. J. Lewis*

Laboratoire d'Ecobiologie des Insectes Parasitoïdes, Université de Rennes 1, Avenue du Cénéral Leclerc, 35042 Rennes Cedex, France; and *Insect Biology and Population Management Research Laboratory, USDA-ARS, P.O. Box 748, "Diton, Ceorgia 31793

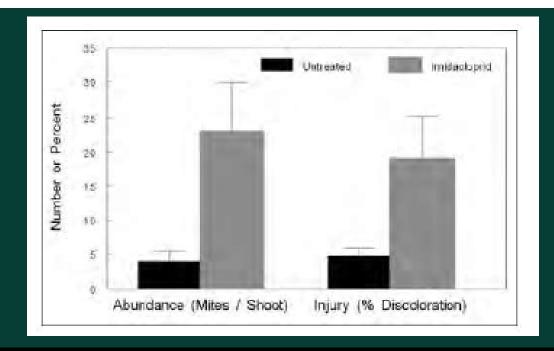

Received April 20, 1999; accepted October 25, 1999


HORTICULTURAL ENTOMOLOGY

Role of Imidacloprid in Integrated Pest Management of California Citrus

E. E. GRAFTON-CARDWELL,^{1,2} J. E. LEE,¹ S. M. ROBILLARD,³ AND J. M. CORDEN³

Department of Entomology, University of California, Riverside, CA 92521

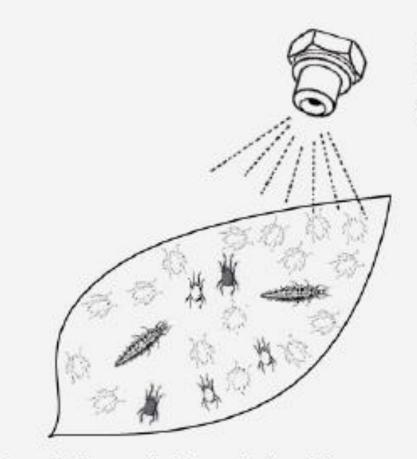

ISA

Arboriculture & Urban Forestry 2012. 38(2): 37-40

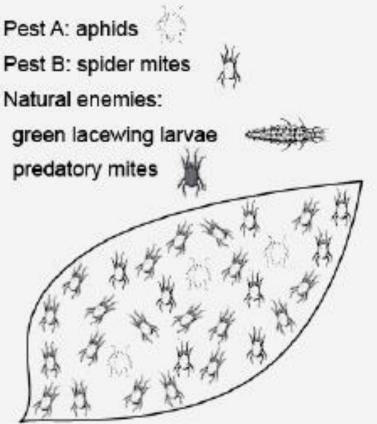
Effects of Imidacloprid on Spider Mite (Acari: Tetranychidae) Abundance and Associated Injury to Boxwood (*Buxus* spp.)

Adrianna Szczepaniec and Michael J. Raupp

So what's the problem?


Neonicotinoid Insecticide Imidacloprid Causes Outbreaks of Spider Mites on Elm Trees in Urban Landscapes

Adrianna Szczepaniec¹*^a, Scott F. Creary^{1^a}, Kate L. Laskowski^{1^ac}, Jan P. Nyrop², Michael J. Raupp¹


1 Department of Entomology, University of Maryland, College Park, Maryland, United States of America, 2 Department of Entomology, Cornell University, Ithaca, New York, United States of America

Citation: Szczepaniec A, Creary SF, Laskowski KL, Nyrop JP, Raupp MJ (2011) Neonicotinoid Insecticide Imidacloprid Causes Outbreaks of Spider Mites on Elm Trees in Urban Landscapes. PLoS ONE 6(5): e20018. doi:10.1371/journal.pone.0020018

Neonic challenges: secondary pest outbreaks

A pesticide applied to control pest A also kills natural enemies that are controlling pest B.

Released from the control exerted by natural enemies, pest B builds up to economically damaging levels.

Pesticide Toxicity to Natural Enemies

Insecticide	Contact Toxicity (immediate killing)	Persistence of Toxic Residue*			
Bacillus thuringiensis	No contact	No persistence			
Oils/Soaps	Moderate contact	No persistence			
Botanicals (pyrethrins/ azadirachtin)	Moderate to High contact	Short persistence			
Spinosad	Moderate contact	Intermediate persistence			
Organophosphates/ Carbamates/Pyrethroids	High contact	Intermediate to long persistence			
Imidacloprid: Foliar spray	Variable: Most natural enemies affected	Intermediate persistence			
Imidacloprid: Soil applied or root/trunk-injected	Bees, predatory beetles and nectar-feeding parasites affected	Long persistence			
* Persistence is the length of time a pesticide remains toxic.					

Pesticides

Insectides/Miticides

- abamectin
- acephate
- allethrin
- arsenic trioxide
- azadirachtin
- Bacillus thuringiensis
- Beauveria bassiana
- bifenthrin
- borate
- carbaryl
- clothianidin
- cryolite
- cyfluthrin
- dinotefuran
- disulfoton
- fipronil
- fluvalinate
- horticultural oil
- hydramethylnon
- imidacloprid
- ioioba oil

Herbicides

- 2,4-D
- benefin
 - bensulide
- bentazon
- bromoxynil
- calcium acid
- clechodim
- **DCPA** dicamba dichlobenil
- dimethenan
- diquat
- EPTC
- fluazifop
- fluroxypyr

- dithiopyr

- foramsulfur
- glufosinate

JC↓IPM Online

Statewide Integrated Pest Management Program

How to Manage Pests Pesticide Information

About Pesticide Information

Active ingredient: Horticultural oil Pesticide type: fungicide, insecticide (oil)

Synonyms: fungicidal oil; horticultural oils; insecticidal oil; mineral oil; narrow range oil; oil; petroleum oil; summer oil; supreme oil

See example products below.

Acute Toxicity to People and Other Mammals⁴

Toxicity rating: Not Acutely Toxic

Long-Term Toxicity to People and Other Mammals⁵

So what's the problem?

- Nontarget effects

 Natural enemies
 - Pollinators
 - Direct mortality due to contact, residues
 - Direct mortality due to nectar, pollen, exudate feeding
 - Sublethal effects suggested: immune system suppression, memory, learning

Neonic challenges: nontarget damage

Different neonics = different toxicity to bees

Pesticide	Oral LD₅o (µg/bee)	Oral LC₅₀ (µg/L)	Relative Potency Factor			
Acetamiprid	14.53	558,846	0.0003			
Clothianidin	0.0037	142	1.06			
Dinotefuran	0.023	885	0.17			
Imidacloprid	0.0039	150	1.00			
Thiamethoxam	0.005	192	0.78			

So what's the problem?

- Increasing scrutiny
 - Regulatory agencies
 - Environmental conservation groups
 - Communities
- New regulations
 - European Union
 - State of Oregon
 - US EPA

Situations where they are 'required'?

Urban arboriculture pest systems commonly targeted by neonicotinoid applications:

- Honeydew management (aphids, soft scale)
- Leaf beetles
- Myoporum thrips
- Citrus leafminer
- Borers?
- Psyllids

Active ingredient (common name)	Representative products registered for use in urban landscape settings
acetamiprid	Tristar, many Ortho home-use products
clothianidin	Aloft, Arena, some Bayer Advanced products
dinotefuran	Safari, Zylam, some Ortho home-use products
imidacloprid	Marathon, Merit, Premise, many Bayer Advanced products
thiacloprid	Calypso
thiamethoxam	Amdro, Caravan, Flagship, Maxide, Meridian

Honeydew management

Soft scales

tuliptree scale

Alternative tactics and IPM approaches:

- Provide proper irrigation, avoid fertilization unless deficiency confirmed
- Prune out heavily-infested branches
- Conserve natural enemies, exclude ants
- Consider site-specific threshold for honeydew, monitor for honeydew
- Monitor for crawlers
- Soaps, oils, and pyrethrins (requires good coverage, power spray)

Ants Tend Honeydew-Producing Insects and Feed on the Sugary Liquid

Aphids

Mealybugs

M. Daane, UCB ww.uckac.edu

Conserve Natural Enemies, e.g. Control Ants

Sticky Barrier on trunk wrap to exclude ants

Baits: pesticide enclosed with food attractant

Citrus leafminer

Alternative tactics and IPM approaches:

- Yield from mature trees will not be affected (cosmetic pest)
- Restrict pruning of live branches to once per year to ensure uniform flush; remove watersprouts and suckers
- Use pheromone traps to monitor for adult moths
- Avoid fertilization when adult moths are present
- Conserve natural enemies (avoid broadcasts of broad-spectrum insecticides)
- Apply reduced-risk contact insecticides (spinosad, azidirachtin) to flush every 7-14 days when adult moths are present and shortly thereafter

Myoporum thrips

Alternative tactics and IPM approaches:

- Don't plant susceptible species (M. laetum, M. pacificum)
- Remove susceptible myoporum (Myoporum laetum is considered 'moderately invasive' by Cal IPC) and replace with alternatives
- Conserve natural enemies (avoid broadcasts of broad-spectrum insecticides)

Psyllids

- Many native , some introduced species
- · Honeydew, distorted growth associated with some
- Asian citrus psyllid: mandated 'suppression' or 'eradication' by CDFA

- Don't plant susceptible species
- Provide proper irrigation, avoid fertilization unless deficiency confirmed
- Prune out infestation (species-specific life cycles considered)
- Conserve natural enemies, exclude ants
- Consider site-specific thresholds, monitor populations
- Soaps, oils, azadirachtin, spinosad, and pyrethrins applications

Leaf beetles (chrysomelids)

- Elm leaf beetle
- Eucalyptus tortoise beetle

Alternative tactics and IPM approaches:

- Provide proper irrigation, avoid fertilization unless deficiency confirmed
- Plant tolerant species / cultivars (see tables within UC IPM Pest Notes)
- Conserve natural enemies (avoid broadcasts of broad-spectrum insecticides)
- Consider site-specific thresholds (trees won't die)
- Bark band applications of persistent contact insecticides when mature larvae observed (elm leaf beetles)

What about borers (beetles)? Zero - limited effect likely for most species Examples: GSOB, WTB, ambrosia beetles Some effects on foliage-feeding adults Examples: EAB, Asian longhorn beetle

Alternative tactics and IPM approaches:

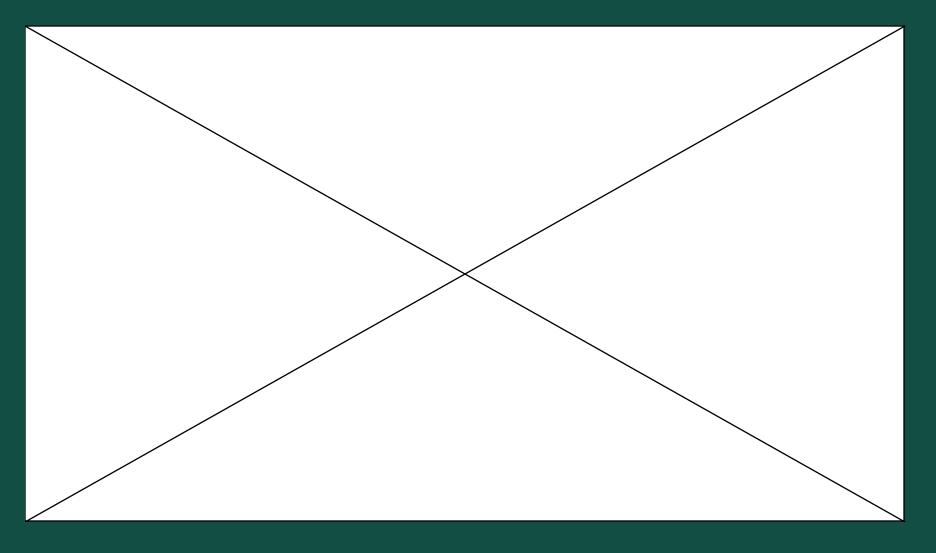
- Provide proper irrigation and maintenance to prevent tree stress
- Beetles are symptoms (secondary problems) rather than the primary problems
- Monitor for adult beetle flights
- For extremely valuable trees: make trunk and lower branch applications of persistent barrier insecticides (pyrethroids, carbaryl, etc.) when adults are flying

Alternative chemistries (C. Sadoff, 2015)

Trade names	Active Ingredient	Class	Caterpillars	Sawflies	Beetle grubs	Beetle adults	Aphids	Scales	Lace bugs	Thrips	Spider Mites	Flies
Avid	Avermectin	Avermectin	х	x	X	Х	Х	X	X	X	Х	X
Tree-Age, Arbormectin	Emamectin Benzoate	Avermectin	x	x	x	x	x					
Neem oil	Neem oil	Botanic	x	x			х	X	x		х	
Sevin	Carbaryl	Carbamate	х	x	х	х						х
Mesurol	Metaldehyde	Carbamate					х			X		
Floramite	Bifenazate	Carbazate									Х	
Hexagon	Hexythiazox	Carboxamide									х	
Azatrol, Azatin	Azadirachtin	Insect growth regulator	x	x			x	x				x
Dimilin	Diflubenzuron	Insect growth regulator	x									x
Provaunt	Indoxacarb	Insect growth regulator	x	x								
Distance	Pyriproxyfen	Insect growth regulator					x	x				
Confirm	Tebufenozide	Insect growth regulator	x									
Forbid	Spiromesefin	Keto-enol					Х				X	
Thuricide	Bacillus thuringiensis(K)	Microbial	x									
Conserve	Spinosad	Microbial	x	x						x		х
Oil	Horticultural oil	Oil	х	x			х	X	x	х	х	
Orthene, Precise	Acephate	Organophosphate	х	x	x	х	х	Х	x	X	х	х
Diazinon	Diazinon	Organophosphate	х	x	Х	Х	Х	Х	х	х		Х
Malathion	Malathion	Organophosphate	x	x	х	х	х	X	x	x		х
Talstar, Onyx + more	Bifenthrin	Pyrethroid	х	x	х	х	х	X	x	х	х	х
Tempo	Cyfluthrin	Pyrethroid	x	x	х	х	х	X	x	x		х
Deltaguard	Deltamethrin	Pyrethroid	х	Х	х	х	Х	Х	х	х		х
Mavrik	Fluvalinate	Pyrethroid	х	х	х	х	х	х	X	x	х	х
Scimitar, Battle	Lambda- cyhalothrin	Pyrethroid	х	х	х	х	x	x	x	x	x	x
Astro, Perm-x	Permethrin	Pyrethroid	x	х	х	х	х	х	х	x	х	х
Pyrethrin	Pyrethrin	Pyrethroid	х	х	х	х	х	х	x	х	х	х
Resmethrin	Resmethrin	Pyrethroid	x	х	х	х	х	х	x	x	х	х
Acelepryn	Chlorantraniliprole	Ryanidine Inhibitor	x	x	x		x		x			x
Insecticidal soap	Insecticidal soap	Salt of fatty acid	х	х			х	x	x	x	x	

- Andrew Sutherland
- Bay Area Urban IPM Advisor
- amsutherland@ucanr.edu
- http://ucanr.edu/sites/urbanIPM/
- 510 670 5624 office
- 510 499 2930 cell

Outline


Pest developmentsof 2015...→ please tell me what I am missing...!Neonic situationsby Dr. Andrew SutherlandGlyphosate funRoundup round-ups...Discussion(rotten fruit throwing, etc.)

Glyphosate (Roundup®) October 2015: IARC Report November 2015-now: pandemonium...

Glyphosate: What did IARC actually say...

https://www.youtube.com/watch?v=CbBkB81ySxQ

Glyphosate: some details behind the IARC rating...

~ based on the **strength of evidence**; **NOT on the degree of risk** (no info on how carcinogenic, how many, what cancers etc....)

~ in other words: how certain we are that it might be dangerous; NOT "how dangerous" it is

~ Example: banana peel accidents vs. car accidents

but all this probably will not matter much...

Weed management in the new era...

1: Get communicatin'...! (emphasize IPM context, process)

2: Follow developments in your County and around the Bay (e.g., San Francisco)

3: Look for resources – UC, for example

4: Continue communicating!

Weed management in the new era: alternatives

(1) hand weeding, edging, mulch, and mowing...

(2) The closest thing : glufosinate (Finale, Cheetah, others);
 a non-selective herbicide, limited translocation.
 but has a *Warning* label (vs. *Caution* for glyphosate)

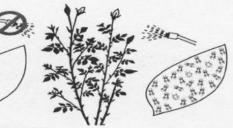
(3)For smaller weeds: contact non-selective Suppress, or Avenger (org).or lower risk, e.g. Scythe.

Weed management in the new era: alternatives 2

(1) hand weeding, edging, mulch, and mowing...
 (2) glufosinate (Finale, Cheetah, others);
 (3)For smaller weeds: contact non-selective organics

(4) Or a combination of:
 a grass-selective transl. (fluazifop, sethoxydim, clethodim)
 +
 a broadfelaf-selective herbcide e.g., Turflon, Lontrel.

IPM Prevention Diagnosis, Identification Monitoring Thresholds Management

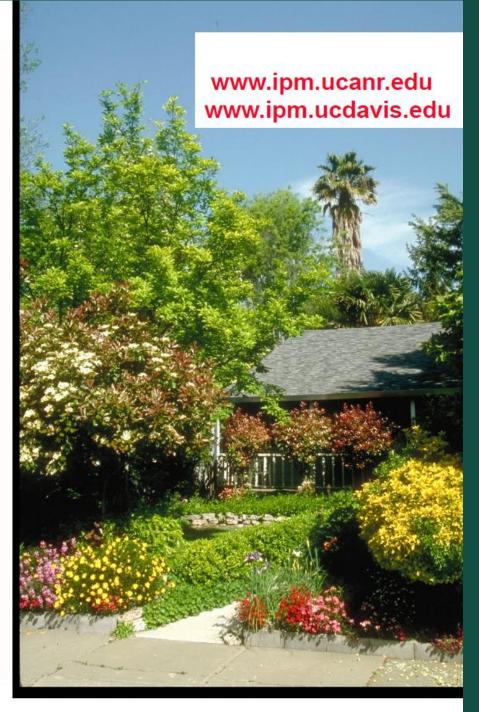

1. Prevention

2. Pest and symptom identification

3. Regular surveying

4. Thresholds

5. Appropriate management



Pesticides in Urban IPM Programs

- Only use when nonchemical controls are ineffective and pests are reaching intolerable levels.
- Need for treatment must be determined by monitoring
- Rely on University of California publications for advice on when needed.
- Use pesticides in combination with other methods.
- Choose pesticides carefully. Use the least toxic effective material. Apply in ways that reduce exposure.
- Follow directions, wear protective equipment, and dispose properly.

IPM is knowledge-based

The most important IPM component is a well-informed, resourceful, and thoughtful decision-maker.

ilacan@ucanr.edu 510 684 4323

